
Test of Trajectory Surface Hopping Against Accurate Quantum Dynamics for an
Electronically Nonadiabatic Chemical Reaction

Maria S. Topaler,† Thomas C. Allison,† David W. Schwenke,‡ and Donald G. Truhlar* ,†

Department of Chemistry and Supercomputer Institute, UniVersity of Minnesota,
Minneapolis, Minnesota 55455-0431, and National Aeronautics Space Administration Ames Research Center,
Mail Stop 230-3, Moffett Field, California 94035-1000

ReceiVed: October 1, 1997; In Final Form: December 19, 1997

This paper presents the first test of the popular trajectory surface-hopping (TSH) method against accurate
three-dimensional quantum mechanics for a reactive system. The system considered is a model system in
which an excited atom with an excitation energy of 0.76 eV reacts with or is quenched by the H2 molecule.
The electronically nonadiabatic collisions occur primarily near a conical intersection of an exciplex with a
repulsive ground state. The accurate quantal results are calculated using the outgoing wave variational principle
in an electronically diabatic representation. Four variants of the TSH method are tested, differing in the
criteria for hopping and the component of momentum that is adjusted in order to conserve energy when a
hop occurs. Coupling between the ground and excited surface occurs primarily in the vicinity of a conical
intersection and is mediated by an exciplex found on the upper surface. We find that the overall TSH quenching
probabilities are in good agreement with quantum mechanical results, but the branching ratios between reactive
and nonreactive trajectories and many of the state-selected results are poorly reproduced by trajectory
calculations. The agreement between trajectory surface hopping and quantal results is on average worse for
the relatively more “quantum mechanical”j ) 0 initial state and M+ H2 quenching process and better for
the relatively more “classical”j ) 2 initial state and MH+ H′ reactive process. We also perform a statistical
calculation of overall quenching probability and unimolecular rate of the nonadiabatic decay of the exciplex.
We find that only about 10 % of trajectories can be described as “statistical” and that statistical calculation
overestimates the total quenching rate significantly.

1. Introduction

Trajectory surface hopping1 (TSH) has become established
as the most universally applicable dynamical model for elec-
tronically nonadiabatic processes in molecules, and various
versions of the basic scheme have been proposed throughout
the years. Trajectory surface-hopping methods have been tested
against accurate quantum dynamics for an electronically nona-
diabatic collision process in full three-dimensional space for
one small-gap (fine-structure) problem2 and one large-gap
problem.3 In the latter case, which is of more interest here, we
considered the quenching of Na(3p) by H2, and we reported
tests of two4,5 of the most general TSH algorithms. Both
methods agreed well with accurate quantum dynamics on the
average. In the present paper we report a test of these trajectory
surface-hopping algorithms, plus two variants, against accurate
quantum dynamics for a three-dimensional reactive collision
process. In particular we consider a model system in which
nonreactive quenching competes with reaction:

where M denotes a model metal atom with annsf np excitation
energy of 0.76 eV and mass equal to that of Li; H2 denotes a
diatomic molecule with realistic parameters for representing H2;
V, V′, and V′′ denote vibrational quantum numbers; andj, j′,
and j′′ denote rotational quantum numbers.

The model system has two coupled electronic states with the
same general topology as the widely studied alkali-metal-plus-
H2 systems. The ground diabatic potential energy surface
correlates with M(ns) and is purely repulsive, similar to rare-
gas-plus-H2-potentials. The excited-state diabatic potential
energy surface correlates to M(np), with excitation energy 0.76
eV, in the reactant arrangement and to MH(X 1Σ+) + H in the
product arrangement, which is 0.70 eV endoergic from M(ns)
+ H2 and 0.06 eV exoergic from M(np) + H2. This surface
shows aC2V minimum (excited-state complex or exciplex) that
is bound by about 0.40 eV with respect to the reactant asymptote
and by 0.34 eV with respect to the product asymptote. (All
these values are potential energies excluding zero-point ener-
gies.) The excited-state surface is very flat in the bending degree
of freedom, with the minimum-energy configuration as a
function of the Jacobi angleø (the angle between the H-to-H
vector rb and the M-to-center-of-mass-of-H2 vectorRB) varying
by only a few hundredths of an eV asø increases from 0
(collinear) toπ/2 (C2V). Along a crossing seam that passes near
the C2V exciplex minimum, the excited diabat intersects the
ground surface conically forC2V geometries, with the lowest
energy conical intersection 0.39 eV below M(np) + H2. As in
our previous model of NaH2,6,7 the model system is assumed
to have no electronic angular momentum and no momentum
coupling8 between the diabatic electronic states. All other terms
in the Hamiltonian for a three-body system are fully included.

Section 2 presents the potential energy surface, section 3
presents the method used for quantum dynamics, and section 4
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presents the four TSH algorithms to be tested. Section 5
describes the calculations, section 6 discusses the results, and
section 7 presents some concluding remarks. Details not needed
for understanding the results are presented in supporting
information.

2. Potential Energy Surfaces

The potential energy surfaces were modeled similarly to our
previous two-state model6 for Na + H2. In the diabatic
representation of ref 6 the Hamiltonian is equal to

whereRB and rb are the unscaled center-of-mass Jacobi coordi-
nates, andPBRandpbr are their conjugate momenta. The potential
energy surfaces depend only on internal coordinates, which are
taken to beR )|RB|, r )|rb|, and angleø between theRB and rb
vectors. Another choice of internal nuclear coordinates that is
used in the discussion consists of the bond coordinatesRHH )
r (distance between the two H atoms),RMH, andRMH′ (distances
between the metal atom and each of the hydrogen atoms). In
eq 2,µ is the reduced mass for the relative motion of M and
H2, m is the reduced mass of H2, and1 denotes a 2× 2 unit
matrix. Adiabatic potential energy surfaces,V1 andV2, are given
in terms of the diabatic surfaces as

where the minus sign corresponds to the ground-state adiabatic
potential energy surface,V1, and the plus sign corresponds to
the first-excited-state adiabatic potential energy surface,V2. The
equations defining the surfaces and all their parameters are given
in the supporting information. In the rest of this section we
describe the critical features of the model system.
Figure 1 shows diabatic and adiabatic potential curves along

an approximate reaction path. This reaction path is defined by
joining two one-dimensional cuts through the potential energy
surfaces: one forRHH ) RHH

e with ø ) 90° (reactant channel)
and another forRMH ) RMH

e with the M-H-H′ bond angle
equal to 90° (product channel).RHH

e andRMH
e are the equilib-

rium interatomic distances in the corresponding diatomic
molecules and are equal to 0.747 and 1.34 Å, respectively. At

C2V geometries (ø ) 90°) the diabatic coupling is zero by
symmetry, so that the adiabatic and diabatic representations are
identical, and the adiabatic potential energy surfaces cross.
The seam of conical intersections and the point of the

minimum energy conical intersection are shown in Figure 2 on
a contour plot of theU22 diabatic potential energy surface in
the ø ) 90° coordinate plane. The point of minimum-energy
conical intersection lies on the reactant side of the potential
minimum, which is also located atø ) 90° and is marked by a
cross in Figure 2. The minimum-energy conical intersection
and theU22 minimum are located 0.372 and 0.360 eV above
the M(ns) + H2 classical asymptote, respectively, and their
geometries are listed in Table 1. The minimum-energy conical
intersection coincides with the minimum-energy configuration
on the excited-state adiabatic potential energy surface. At both
the minimum-energy conical intersection and the minimum-
energy point onU22, the H-H bond is only slightly stretched
from its equilibrium length in our model H2 diatomic molecule
(by 0.004 and 0.002 Å, respectively) while the M-H bond is
stretched significantly from its equilibrium value in the MH
product (by 0.42 and 0.25 Å, respectively). Thus the minimum
U22 structure shown in Figure 1 lies almost but not quite on the
reaction path used for that figure.
At C2V geometries derivatives of potential energy surfaces

with respect to theø angle are equal zero by symmetry, and
the gradient vector lies in the (R, r) coordinate plane. The
gradients of the diabatic potential energy surfaces,∇ UB11 and
∇UB22, calculated at the point of minimum-energy conical
intersection are shown in Figure 2 by dashed and solid arrows,
respectively. These vectors have opposite directions, and∇UB11

is 5.5 times larger in the absolute magnitude than∇UB22 since
U11 changes much faster in this region (cf. Figure 1).
As mentioned above, the crossing seam is located on the

reactant (M+ H2) side of theU22 exciplex minimum. Because
of that the ground-state adiabatic potential energy surface has
an intermediate minimum separated from reactants by a small

Figure 1. Diabatic (dashed lines) and adiabatic (solid lines) potential
energy curves along an approximate reaction path (see text). Geometries
and several lowest vibrational-rotational energy levels of the ground-
state (M(ns) + H2) and the excited-state (M(ns) + H2) reactants, and
of the products (MH+ H) are also shown, as well as the geometry
and classical energy of the minimum on theU22 diabatic potential energy
surface.
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Figure 2. Contour plot of theU22 diabatic potential energy surface
for C2V geometries. The seam of conical intersections is shown by a
thick solid line, the lowest-energy conical intersection is shown by a
solid dot, and the minimum ofU22 is shown by a cross. Gradients of
the diabatic potential energy surfaces at the minimum-energy conical
intersection are shown as solid (∇UB11) and dashed (∇UB22) arrows. (The
relative length of the arrows is meaningful, but the absolute length is
not.) The contour lines are 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.4, 1.8, 2.3,
and 2.9 eV.
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barrier. This minimum is located at collinear,ø ) 0°, geometry
and its energy is equal to 0.345 eV relative to the ground-state
M(ns) + H2 classical asymptote. Diabatic and adiabatic
potential energy curves along a reaction path similar to that of
Figure 1 but confined to theø ) 0° coordinate plane are plotted
in Figure 3, and Figure 4 contains a contour plot of the ground-
state adiabatic potential energy surface forø ) 0°. On this
figure we also marked the intermediate potential minimum
discussed above, the seam of avoided crossing (defined for this
plot as the curve along whichU11 ) U22), and the minimum-

energy point on this seam which is located at 0.362 eV. The
energy gap between the adiabatic potential energy surfaces at
the latter point is equal to 0.31 eV.
Contour plots of both diabatic and adiabatic potential energy

surfaces in the (RMH,RHH′) coordinate plane for M-H-H′ bond
angle fixed at 90° are shown in the supporting information for
this paper.
Vibrational frequenciesωi (in energy units, i.e., multiplied

by p) and the corresponding vibrational periodsτi at the
minimum energy configuration onU22 and at the intermediate
minimum on the ground-state potential energy surface are listed
in Table 1. The vibrational periods are defined by

From this table we can see that the H-H vibrational mode in
the exciplex is much faster than the M-H2 Jacobi stretch and
the bending modes which have vibrational frequencies 3-10
times smaller than the H-H vibrational frequency. Since the
minimum on the upper adiabatic potential surface is located on
the seam of conical intersection, vibrational frequencies are
undefined at this minimum.

3. Accurate Quantum Dynamics

The quantum mechanical calculations were carried out by
time-dependent scattering theory using the outgoing wave
variational principle.9 The problem was formulated in the
diabatic electronic representation8,10 as explained in detail
elsewhere.11,12 In this representation geometric phase effects13

are included implicitly. The scattering wave function is a sum
of a regular solution for a nonreactive rotationally coupled
distortion potential14,15 and an outgoing wave determined by
the full potential. The complex outgoing wave is expanded in
a multiarrangement basis set of total angular momentum
eigenfunctions, symmetry adapted to take advantage of parity
and A+ B2 homonuclear symmetry.16

The basis set consists of basis functions associated with
asymptotic channels. In some convergence checks these were
augmented by a set of basis functions associated with a two-
dimensional grid inr, R space; each of these is a product of a
two-dimensional gaussian inr, R times a rotational-orbital
function in arrangement 1. However, the two-dimensional grid
was not used for the final runs. Unlike the NaH2 problem
studied earlier, for the present problem faster convergence was
achieved with only channel basis functions than with a
combination of channel basis functions and basis functions
defined on a two-dimensional grid. Each channel basis function
consists of a linear combination of products of a channel internal
function times a relative translational radial basis function. Each
channel internal function is a product of an electronic ket,7,11,12

a diatomic vibrational-rotational function, a spherical harmonic
for atom-diatom orbital motions.12 The relative translational
radial basis functions are taken as channel components of
rotationally coupled half-integrated Green’s functions17,18 or
distributed gaussians19 in open channels and as distributed
gaussians in closed channels.

TABLE 1: Geometries, Energies, Vibrational Frequencies, and Vibrational Periods at Potential Minima

surface
RMH
(Å)

RMH′
(Å)

RHH
(Å) E (eV)a

ω1 (eV)
(H-H)

ω2 (eV)
(bend)

ω3 (eV)
(M-H2)

τ1 (fs)
(H-H)

τ2 (fs)
(bend)

τ3 (fs)
(M-H2)

U22 1.59 1.59 0.749 0.360 0.3324 0.0689 0.0554 12.4 60.1 74.6
V1 1.35 2.18 0.824 0.345 0.3469 0.0425b 0.1363 11.9 97.5 30.3
V2 1.72 1.72 0.751 0.372

aRelative to the M(ns) + H2 asymptote.bDoubly degenerate.

Figure 3. Diabatic (dashed lines) and adiabatic (solid lines) potential
energy curves along an approximate reaction path confined to collinear
(ø ) 0°) geometries (see text). Geometries and several lowest vibrational
energy levels of the ground-state (M(ns) + H2) and the excited-state
(M(ns)+ H2) reactants, and of the products (MH+ H) are also shown,
as well as the geometry and classical energy of the minimum on the
ground-state adiabatic potential energy surface.

Figure 4. Contour plot of the excited-state adiabatic potential energy
surface at collinear geometries. The seam of avoided crossings is shown
by a thick solid line, the lowest-energy avoided crossing is shown by
a solid dot, and the minimum is shown by a cross. The contour lines
are 0.6, 0.7, 0.8, 0.9, 1.1, 1.4, 1.8, 2.3, and 2.9 eV.

τi ) 2π/ωi (4)
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The regular functions and half-integrated Green’s functions
are determined by the finite difference boundary value method
with high-order (11-point) finite difference operators.15 Matrix
elements over the basis functions are determined by a combina-
tion of angular momentum algebra and multidimensional
numerical integration involving products of repeated Gauss-
Legendre quadratures.11 The coupled equations for the coef-
ficients of the basis functions and scattering matrix elements
are reduced11,20 to a large real set of equations solved by the
UDUT algorithm21and a smaller complex set of equations solved
by our complex implementation of the standard22 LU decom-
position algorithm.

4. TSH Methods

The two basic variants of TSH that we studied are Tully’s
fewest switches3 (TFS) algorithm and the Blais-Truhlar4 (BT)
algorithm. Full details of both methods are presented else-
where.3-5,23 The coupled equations for coordinates, momenta,
electronic state coefficients, and phases were integrated by the
Bulirsch-Stoer method2,24with polynomial extrapolation. The
equations for the electronic state coefficients and phases involve
the momentum coupling matrix elements in the adiabatic
representation and these were obtained from the derivatives of
the diabatic Hamiltonian matrix elements by the method of
Preston and Tully,25 which is exact for our model. Final-state
analysis was based on the histogram method as discussed
elsewhere.23

The original TSH method,26 due to Tully and Preston,
involved predefined crossing seams where the hopping prob-
ability was calculated by the Landau-Zener expression with
parameters fit to numerical solutions of the coupled equations
for the complex adiabatic state coefficients. Hopping was only
allowed at the preidentified seams, and the momentum was
adjusted in the component normal to the seam.
The two methods4,5 examined here both allow for hops at

any position in space, and they are based on integrating the
coupled equations for the complex adiabatic state coefficients
along with the trajectories. No fitting is required, and no
particular topography of the surfaces is assumed. Thus the
methods are not even restricted to localized seams. At any given
point in space and time, the probability of being on surfacei is
given by

wheret is the time.
The BT method always integrates the classical equations on

a surfacei with Pi(t) > 0.5. When this probability falls to 0.5,
a surface hop decision is made on the basis of random number,
and the complex state coefficient for the new surface (which
may be the same as the old surface) is reinitialized to unity.
Tully’s fewest-switches method allows hops for any value of
Pi(t), and the hopping probability is determined by the require-
ment that one makes the fewest “switches” (i.e., hops) consistent
with an algorithm in which the ensemble average of fractional
state populations converges to the set ofPi(t). The state
coefficients are not reinitialized after hops. As a result, a
trajectory may propagate for long periods of time on a surface
for which Pi(t) , 0.5.
The TSH algorithms require specifying a directionNB such

that, when a hop occurs, the momentum required to be added
or withdrawn from nuclear motion to conserve total energy is
added or subtracted in the component parallel toNB.23,27 The
directionNB may be considered to represent a normal to a step

in the potential energy surface corresponding to the hop. In
our previous paper,3 following ref 4, we setNB equal togb/|gb|
where

Thusgb is the gradient of the gap. An alternative choice that
has been proposed5,28 for the directionNB is the nonadiabatic
coupling directiondB/|dB|, where

and where|1〉 and |2〉 denote the adiabatic electronic wave
functions. In the present work we study both TSH algorithms
with both choices ofNB. This yields four variants labeled TFS-
g, TFS-d, BT-g, and BT-d.

5. Calculations

We considerV ) 0 andj ) 0 and 2 in eq 1, total energyE
) 1.10 eV [whereE is measured with respect to M(ns) infinitely
far from H2 without zero-point energy and at its classical
equilibrium separation], and total angular momentumJ ) 0.
For thej ) 0 initial state, the initial relative translational energy
Eint is 0.076 eV, and the initial relative translational orbital
angular momentuml is 0. For thej ) 2 initial state,Eint is
0.032 eV andl is 2.
The quantum mechanical state-to-state transition probabilities

were converged to 1% or better with respect to all basis set and
numerical parameters. Our final results are based on a calcula-
tion with 34 open channels and 323 closed channels. The
channel basis set used for the outgoing wave contains 30-31
coupled-channel half-integrated Green’s functions in each open
channel and 30-31 single-channel distributed Gaussians in each
closed channel. Further details of the basis set and numerical
parameters are given in the supporting information, along with
the results of convergence checks.
For each of the four variants of TSH, and for each of the

two initial states, we calculated 6000 trajectories with local
absolute truncation error of 10-12 and minimum step size 10-4

a0. Trajectories were started with the atom at leastF ) 13.2 Å
from the diatom and were propagated until the final atom-
diatom distance exceededF′ ) 13.2 Å. The results are well-
converged with respect to varying these parameters.

6. Results and Discussion

Quantum mechanical transition probabilities, summed over
final rotational states for a given initial state, process, and final
vibrational quantum number, are presented in Table 2. The

Pi(t) )|ai(t)|2 (5)

TABLE 2: Reaction and Quenching Probabilities for
Collisions of M(np) with H 2(W ) 0, j ) 0 or 2)a

j method
reaction

probability
nonreactive quenching

probability sumb

0 quantum 0.80 0.07 0.87
BT-g 0.47 0.29 0.76
TFS-g 0.68 0.22 0.90
BT-d 0.46 0.29 0.76
TFS-d 0.68 0.20 0.88

2 quantum 0.72 0.19 0.91
BT-g 0.46 0.39 0.85
TFS-g 0.64 0.30 0.94
BT-d 0.45 0.40 0.85
TFS-d 0.66 0.27 0.94

a For trajectory surface hopping results the standard deviations are
less than 0.01 in all cases.b Summed before rounding.

gb ≡ ∇B(V2 - V1) (6)

dB ) 〈1|3B|2〉 (7)
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same transition probabilities obtained from TSH calculations
are also shown in this table and can be compared to the quantum
ones.
In the system studied here chemical reaction and quenching

occur only in electronically nonadiabatic collisions. Table 2
shows that 87-91% of the collisions are electronically nona-
diabatic, depending on the initial rotational state. The TFS
algorithm yields 88-94% for this quantity, in excellent agree-
ment with accurate quantum dynamics, while the BT algorithm
yields only 76-85%, significantly worse. The branching of
this flux into reactive and quenching probabilities provides a
steeper test of the semiclassical theories. The accurate branching
ratio is about 12 forj ) 0 and 4 forj ) 2. The TFS algorithm
yields about 3 and 2, respectively, while BT algorithm yields
about 1.6 and 1.1, respectively. Although neither algorithm is
quantitatively accurate the TFS algorithm is closer to accurate
quantum dynamics. An analysis of the trajectories in the BT
calculations showed that under the conditions studied here, less
than 17% of the trajectories reflect without ever reaching a
surface hop decision.
First moments ofV′′ and j′′ for quenching collisions and of

V′ andj′ for reactive collisions are given in Table 3. This table
tests the ability of the semiclassical methods to predict final
state distributions. The partitioning of flux into ground and
excited vibrational states for reactive collisions is predicted quite
well. In particular, the average values of the MH final
vibrational quantum number for the accurate, TFS, and BT cases
are, respectively, 0.35, 0.40, and 0.34 forj ) 0 and 0.34, 0.33,
and 0.39 forj ) 2. Agreement between average final vibrational
quantum numbers is summarized in Table 4; it is much worse
in the more quantum (due to the higher vibrational frequency
and rotational constant of H2 compared to MH) M+ H2 channel
with an error equal to about 90% forj ) 0 and 50( 10% for
the j ) 2 initial state. The rotational partitioning is on average
not well reproduced. For thej ) 0 initial state the average
rotational quantum numbers obtained from trajectory calcula-

tions deviate from the corresponding quantummechanical values
by 16-28% for reactive collisions and by 72-79% for non-
reactive quenching. The deviations are slightly smaller for the
j ) 2 initial state: 4-12% and 41-62%, respectively.
The tables and figures show very little difference between

the two criteria for adjusting the momentum, so in further
discussion of the results we will usually consider the average
of the g and d prescriptions.
In order to understand the probability of nonadiabatic events

better we carried out a statistical calculation, using the new
statistical method we have recently presented29 for strongly
coupled diabatic surfaces (weakly coupled adiabatic surfaces).
In this method the quenching probability is equal to the ratio
of the quenching rate constant,kquench(E, J), to the total rate
constant for the decay of the exciplex that is equal to the sum
of the quenching rate constant and rate constant for the
dissociation of the exciplex back to the reactants without
deexcitation,kdis(E, J),

The quenching and dissociation rate coefficients were obtained
by performing numerically the microcanonical phase-space
averaging of the corresponding fluxes.29 For j ) 0 or 2, there
is essentially no barrier in the entrance channel, and therefore,
the quenching probability depends slightly on the positionRc
of the dividing surface separating exciplex from the electroni-
cally excited reactants M(np)+ H2. Table 5 contains the results
for several different values ofRc. ParametersλE andλR in Table
5 are numerical parameters which should be sufficiently small
for the calculation to converge. Table 5 demonstrates that our
results are converged with respect to these parameters.
The statistical calculation predicts 96% nonadiabatic pro-

cesses. It is not clear how to divide this between reactive and
quenching probabilities, but statistically half the quenching
would have negative M-to-H2 momentum and half would have
positive M-to-H2 momentum. One would expect all the former
ones and some nonzero fraction of the latter to lead to M(ns)
+ H2. Thus the statistical reaction-to-quenching ratio would
bee1. Thus the statistical model cannot explain the observed
branching ratios.
Further insight into the statisticality of the collisions, or lack

thereof, can be obtained from the lifetime distributions of

TABLE 3: Average Vibrational and Rotational Quantum
Numbers and Transition Probabilities for Producing a Given
Vibrational Level for Collisions of M( np) with H 2(W ) 0, j )
0 or 2)a

probability of a given
final vibrational stateb

j product method
<V′> or
<V′′>′′

<j′> or
<j′′>′′

V′ or V′′ )
0

V′ or V′′ )
1

0 MH + H quantum 0.35 4.5 0.52 0.28
BT-g 0.34 5.8 0.31 0.16
TFS-g 0.41 5.3 0.40 0.28
BT-d 0.33 5.8 0.31 0.15
TFS-d 0.40 5.4 0.41 0.27

0 M(ns)+ H2 quantum 0.72 3.9 0.02 0.05
BT-g 0.07 0.8 0.27 0.02
TFS-g 0.07 1.1 0.21 0.01
BT-d 0.07 1.1 0.28 0.02
TFS-d 0.07 1.0 0.19 0.01

2 MH + H quantum 0.34 5.1 0.47 0.24
BT-g 0.37 5.4 0.29 0.17
TFS-g 0.33 5.8 0.43 0.21
BT-d 0.40 5.4 0.27 0.18
TFS-d 0.33 5.6 0.44 0.22

2 M(ns)+ H2 quantum 0.29 3.2 0.14 0.06
BT-g 0.11 4.9 0.35 0.05
TFS-g 0.15 5.2 0.25 0.05
BT-d 0.13 4.6 0.35 0.05
TFS-d 0.17 4.9 0.23 0.05

a For trajectory surface-hopping results: standard deviations are less
than or equal to 1 in last digit quoted in all cases.b Summed over
rotational states.

TABLE 4: Average Deviations of First Moments of Product
Vibrational Distributions from Accurate Quantum Ones a

j ) 0 j ) 2

reaction
BT 3% 14%
TFS 16% 2%

nonreactive quenching
BT 90% 58%
TFS 91% 46%

a Average of g and d prescriptions.

TABLE 5: Total Quenching Probability from Statistical
Calculation

λE
(eV)

λR
(Å)

Rc
(Å)

kdis
(ps-1)

kcrit
(ps-1)

kquench
(ps-1)

quenching
probability

0.005 0.0053 5.8 1.16( 0.06 29.1( 0.3 25.2( 0.3 0.96( 0.02
0.005 0.0053 7.5 0.99( 0.07 22.3( 0.3 19.3( 0.3 0.95( 0.03
0.005 0.0053 9.0 0.76( 0.06 18.6( 0.3 16.1( 0.3 0.95( 0.04
0.003 0.0053 5.8 1.18( 0.02 29.8( 0.1 25.8( 0.1 0.96( 0.01
0.003 0.0053 7.5 0.94( 0.02 23.1( 0.2 20.0( 0.2 0.96( 0.02
0.003 0.0053 9.0 0.75( 0.02 19.1( 0.2 16.5( 0.2 0.96( 0.02
0.003 0.0026 7.5 0.93( 0.02 23.1( 0.2 20.0( 0.2 0.96( 0.02

PQ(E, J) )
kquench(E, J)

kquench(E, J) + kdiss(E, J)
(8)
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quenched trajectories (i.e., trajectories that end on the ground
electronic state) in Figure 5. Distributions calculated for thej
) 0 initial state with the BT and TFS methods are presented in
Figures 5a,b, respectively. The plots forj ) 2 are similar to
those forj ) 0 and so are not shown. The collision lifetime of
a trajectory is defined as30

whereF is the initial separation between M(np) and H2, F′ is
the final separation between M(ns) and H2 or MH and H′, Vrel
andV′rel are initial and final relative velocities,T is the time of
the collision, andT0 is the time that the particles would have
spent between the initial and final points of the trajectory in
the absence of interaction potential. Due to the repulsive part
of the potential at short internuclear distances, most of the
trajectories have negative collision lifetimes. As discussed in
section 2 the seam of conical intersection and the hyperplane
of avoided crossings are located on the reactant side of the
exciplex minimum on theU22 diabatic potential energy surface
(see Figures 1-4). This can be compared to the NaH2 system
studied earlier3 where the minimum-energy conical intersection
almost coincided with theU22 minimum. Because theU12

function dies off rapidly as we move from the interaction region
to the reactant asymptote, the diabatic coupling is relatively weak
at the seam of crossing betweenU11 andU22 surfaces even for

ø < 90° as compared to the NaH2 system.3 A typical trajectory
from the left part of the lifetime distribution changes electronic
surfaces at its first crossing of the seam region, and then directly
proceeds toward the MH+ H′ asymptote. Obviously, such
trajectories are poorly described by a statistical model which
assumes that the system is trapped for a long time in the exciplex
well and gets completely randomized. Trajectories from the
long-lifetime tail of the distribution spend more time in the
exciplex well, and the statistical model might be applicable to
this part of the distribution. For unimolecular statistical decay
of a complex31,32 the lifetime distribution is exponential

and can be used to extract the unimolecular rate constant,k(E,
J).29 Indeed, within the numerical error bars of our calculation,
the large-τ part of the lifetime distributions in Figure 5 can be
fit to the exponential function of eq 10. Table 6 lists the fraction
of trajectories belonging to the exponential part of the lifetime
distribution and the resulting exponents,k(E, J), which in this
case give the quenching rates,kquench(E, J). On average the
quenching rates are equal to about 11 ps-1, and only about 10%
of trajectories lie in the region of the lifetime distribution that
is linear on the logarithmic plots of probability density vs.τ
shown as inserts in Figure 5. By comparing Tables 5 and 6 we
can see that our statistical model overestimates the rate of
quenching by at least a factor of 2. This is similar to the results
for the Na(3p)+ H2 nonreactive collisions29where the statistical
model also predicted quenching rates 2-3 time larger than those
extracted from trajectory lifetime distributions. The discrepancy
can be explained by the neglect of multiple electronic transitions
in the statistical calculation, although the above analysis of the
lifetime distributions indicates that statistical approximation itself
is completely inadequate for the present system.
Figure 6 shows the distribution of hops as a function of

scattering angle as obtained from trajectory calculations and
from the statistical model. Figure 7 is similar to Figure 6 but

Figure 5. Distribution (histogram) of collision lifetimes for theV )
0, j ) 0 initial state. Part a, BT method; part b, TFS method. Inserts
show the same distribution on logarithmic scale.

τ(F, F′, E, J, ...)
≡ lim

Ff∞
F′f∞

[T(F, F′, E, J, ...)- T0(F, F′, E, J, ...)]

) lim
Ff∞
F′f∞

[T(F, F′, E, J, ...)- F/Vrel - F′|V′rel], (9)

TABLE 6: Quenching Rates from Collision Lifetime
Distributions of Quenching Trajectories

initial state method k(E, J) (ps-1)
number of statistical
trajectories (%)

V ) 0, j ) 0 BT 9.9( 0.6 7.8( 0.3
TFS 11.3( 0.7 9.5( 0.3

V ) 0, j ) 2 BT 10.3( 0.3 15.3( 0.4
TFS 12.9( 0.5 13.5( 0.3

Figure 6. Distribution (histogram) of the angleø at the moment of
hopping. Triangles, BT method; diamonds, TFS method. Filled markers
connected by solid line correspond to theV ) 0, j ) 0 initial state,
hollow markers connected by short-dashed lines correspond to theV
) 0, j ) 2 initial state. Results of the statistical model are shown by
the squares connected by long-dashed lines.

P(E, J, τ) ) k(E, J) exp[-k(E, J)τ] (10)

Trajectory Surface Hopping J. Phys. Chem. A, Vol. 102, No. 10, 19981671



for the hopping distribution as a function of the adiabatic energy
gap at the hop location. The hopping distributions obtained
with two TSH methods agree with each other very well.
However, there is a large difference, especially for angular
distributions, between thej ) 0 and thej ) 2 results. Forj )
0 the probability of electronic transitions increases monotonically
with ø, and the distributions look very similar to the ones
obtained earlier for Na(3p)+ H2 nonreactive collisions.29 For
j ) 2 the angular distributions have higher probability at small
values ofø compared to thej ) 0 case, and they actually have
a maximum atø ≈ 45°. The difference between thej ) 0 and
thej ) 2 cases is not caused by the difference in the translational
energy because an additionalj ) 2 calculation with the same
relative translational energy as for thej ) 0 case (0.076 eV
translational energy and 1.143 eV total energy) produced
distributions similar to those from the originalj ) 2 calculation
(with translational energy of 0.032 eV). As discussed above,
most trajectories in this system are nonstatistical (i.e., they hop
to the ground electronic surface and leave the interaction region
right after they reach the crossing seam for the first time during
their initial approach from the reactant asymptote). Therefore,
the angular hopping distributions are probably strongly influ-
enced by the angular distributions of trajectories in the reactant
channel. This explains larger differences between the trajectory
results and the predictions of the statistical model then those
observed for the Na(3p)+ H2 nonreactive collisions29 where
about half of all trajectories were “statistical” (as opposed to
about 10% for the present system). We note that initial
distributions of reactants with respect to the angleø are quite
different for thej ) 0 and thej ) 2 initial state because of the
difference in the distribution of the impact parameter corre-
sponding to thel ) 0 and thel ) 2 cases (l ) j for J ) 0,
wherel is the orbital angular momentum quantum number).33

This difference in initialø-distributions might also be the cause
of the difference between angular hopping distributions for the
two initial rotational states.

7. Concluding Remarks

For single-surface (electronically adiabatic) reaction dynamics
quasiclassical trajectory methods have been extensively tested
vs quantum mechanical results (for some of the most recent
work see, e.g., refs 34-46). In general, agreement between
quantum mechanical and quasiclassical trajectories is quite good,

although such problems as the inability of trajectory calculations
to account for tunneling effects and zero-point energy restrictions
can lead to large errors for some systems. On average the errors
are smaller for heavier particles, for more averaged quantities,
and further from energetic thresholds and quantum resonances.23

Here and in our previous paper3 on nonreactive quenching
collisions of Na(3p) and H2 we extend the comparison of
quantum mechanical and trajectory methods to the case of
electronically nonadiabatic reactions. For both nonadiabatic
systems that we have studied (the present one and the Na(3p)
+ H2 quenching collisions3) trajectory surface hopping methods
seem to be able to predict average quenching probabilities at
least qualitatively correctly (although, unsurprisingly, oscillations
of quantum mechanical probabilities as functions of energy
could not be reproduced3). However, unlike the nonreactive
collisions of ref 3, the reactive system studied here presents an
opportunity to test the ability of TSH methods to predict more
detailed information such as the branching ratios between the
two different product channels.
Although there are no previous tests of the TSH method for

reactive collisions in 3-D, there is a relevant previous test for a
collinear system. In particular Bowman et al. studied47 the
system

where28X is pseudoatom of mass 28 and * denotes electronic
excitation. For a relative translational energyErel in the range
of 0.1 eV, the probability of producing BaO* was (on average)
0.3 quantum mechanically but only 0.1 when calculated by the
original Tully-Preston TSH method. The authors concluded
that the TSH model was inadequate, despite the large masses
of all nuclei.
One expects that semiclassical methods will often improve

in larger numbers of dimensions because of increased averaging,
and in the present case we find errors in the electronically
nonadiabatic reaction probabilities of only 9-15% for the TFS
algorithm and∼40% for the BT algorithm, as compared to 67%
for the collinear example. However, our nonreactive quenching
probabilities have more than 200% errors forj ) 0 and 40-
100% errors forj ) 2, and the branching ratios are off by a
factor of 3.5-7.7 for j ) 0 and factors of 1.5-3.3 for j ) 2.
The reaction probabilities have smaller relative errors in our
case than in ref 47 because these probabilities are closer to 1.
But the absolute errors in the reaction probabilities are com-
parable (0.12-0.34 for j ) 0 and 0.06-0.27 for j ) 2). Thus,
despite the “good’ agreement with accurate quantum dynamics
for the total nonadiabatic reaction probability, many of the state-
selected results are not well reproduced by TSH, although errors
are smaller for thej ) 2 state than for the highly quantumj )
0 one. Especially forj ) 0, the present results are no better
than those of ref 47. In general for the present reactive system,
the overall agreement between the results of trajectory surface
hopping and accurate quantum mechanical calculations seems
to be worse than for the nonreactive quenching collisions studied
in ref 3. Futher testing on a variety of systems will be required
to assess the generality of the qualitative trends.
We have also used a previously developed statistical model

to calculate the rate constants for the unimolecular decay of
the exciplex and the overall quenching probabilities. The
statistical quenching rates constants differ from those obtained
from TSH calculations by at least a factor of 2, which is not
surprising since our analysis of the collision time distributions
of the trajectories showed that about 90% of them hop to the

Figure 7. Distribution (histogram) of the energy gap (∆E) between
the adiabatic potential energy surfaces at the moment of hopping.
Triangles, BT method; diamonds, TFS method. Filled markers con-
nected by solid line correspond to theV ) 0, j ) 0 initial state, hollow
markers connected by short-dashed lines correspond to theV ) 0, j )
2 initial state. Results of the statistical model are shown by the squares
connected by long-dashed lines.

Ba+ O28 X f {BaO*+ 28X ∆E∼ 0

BaO+ 28X ∆E) -0.2 eV}
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ground electronic state at their first passage of the crossing seam
and proceed directly to products without getting trapped in the
exciplex well.
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